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Abstract

What enables us to think verbally? We hypothesized that the interaction between
motor and sensory systems induced speech representation without external
stimulation or overt articulation. This motor-to-sensory transformation formed the
neural basis that enabled us to think verbally. Analogous to the frequency tracking of
neural responses to auditory stimuli, we asked participants to imagine singing lyrics
of famous songs rhythmically while their neural electro-magnetic signals were
recorded using magnetoencephalography (MEG). We found that when participants
imagined with less temporal variation, the neural oscillation at the delta band (same
frequency band as the rhythm in the songs) showed more consistent phase coherence
across trials. This neural phase tracking of imagined singing was observed in a
frontal-parietal-temporal network — the proposed motor-to-sensory transformation
pathway, including inferior frontal gyrus (IFG), insula, premotor, intra-parietal sulcus
(IPS), temporal-parietal junction (TPJ), primary auditory cortex, and superior
temporal gyrus and sulcus (STG & STS). These results suggest that neural oscillations
can entrain the rhythm of our mental activity. The coherent activation in the motor-to-
sensory transformation neural network mediates the internal construction of
perceptual representation and forms the neural computation foundation for inner

speech during verbal thinking.
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Introduction

‘What is this paper about?’ Probably you are asking this question now in your
mind. We think in a verbal form all the time in everyday life. Verbal thinking is
usually manifested in the form of inner speech — a type of mental imagery induced by
covert speaking (Alderson-Day & Fernyhough, 2015; Sokolov, 2012; Tian &

Poeppel, 2012). What enables the train of thought as inner speech?

Neural evidence suggest that modality-specific cortical processes mediate covert
operations of mental functions. For example, previous studies have been demonstrated
that mental imagery was mediated by neural activity in modality-specific cortices,
such as motor system for motor imagery (Jeannerod, 1995; Porro et al., 1996) and
sensory systems for visual imagery (Kosslyn et al., 1999; Wheeler, Petersen, &
Buckner, 2000) and auditory imagery (Kraemer, Macrae, Green, & Kelley, 2005;

Zatorre, Halpern, Perry, Meyer, & Evans, 1996).

Recently, the internal forward model has been proposed to internally link the
motor and sensory systems (Wolpert & Ghahramani, 2000). The presupposition is the
mechanism of motor-to-sensory transformation -- a copy of motor command, termed
as efference copy, was internally sent to sensory regions to estimate the perceptual
consequence of actions (Kawato, 1999; Schubotz, 2007). The motor-to-sensory
transformation have been implicated in speech production, learning and control
(Guenther, 1995; Hickok, 2012; Houde & Nagarajan, 2011; Liu & Tian, 2018; Zhen,

Van Hedger, Heald, Goldin-Meadow, & Tian, 2019), and have been extended to
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speech imagery (Jack et al., 2019; Tian, Ding, Teng, Bai, & Poeppel, 2018; Tian &
Poeppel, 2010, 2012, 2013, 2014; Tian, Zarate, & Poeppel, 2016; Whitford et al.,
2017). The operation of motor-to-sensory transformation has been suggested in a
frontal-parietal-temporal network. Specifically, it was assumed that the motor system
in the frontal lobe simulated the motor action, whereas the sensory systems in the
parietal and temporal lobes estimated the possible perceptual changes caused by the
action (Tian & Poeppel, 2010, 2012; Tian et al., 2016). Would the continuous
simulation and estimation in the motor-to-sensory transformation network mediate

inner speech during verbal thinking (Hesslow, 2002)?

Thinking verbally is similar to speech that is unfolding over time. The analysis of
time-series information in speech perception has been investigated with a frequency-
tagging paradigm. Using this paradigm, it has been demonstrated that neural
oscillations can be temporally aligned to the frequency of acoustic features, such as
speech envelop (Ding & Simon, 2012; Luo & Poeppel, 2007). The neural oscillations
can also entrain to the perceptual and cognitive constructs, such as syllabic
information (Buiatti, Pefa, & Dehaene-Lambertz, 2009), music beats (Nozaradan,
Peretz, Missal, & Mouraux, 2011; Nozaradan, Peretz, & Mouraux, 2012), and
syntactic structures (Ding, Melloni, Zhang, Tian, & Poeppel, 2016). That is, the
frequency of oscillation can mirror the rate of internal representation derived from
external stimulation. Would neural oscillations track the representations that are
constructed without external stimulation, such as inner speech during verbal thinking?

The aim of this study was using a frequency-tagging paradigm to investigate the
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neural mechanisms that mediated inner speech and verbal thinking. We implemented
a natural and rhythmic setting in which participants were asked to imagine singing
lyrics of famous songs [Fig. 1a]. Unlike the frequency-tracking of passive listening to
external stimuli that had a consistent rate across trials, the production rate in the active
imagery inevitably had temporal variance across trials. We used two approaches to
deal with temporal variation. First, the purpose of a musical context was to reduce the
large temporal variability during imagery — participants would imagine singing in a
more consistent rate compared with speaking the same lyrics. Second, we took
advantage of the remaining temporal variation among trials in imagery [Fig. 1b-d].
The variation in reaction time correlated with the temporal consistency of neural
responses across trials. If the neural oscillations tracked the rate of inner speech, the
phase-coherence of neural responses would be different between two groups of trials
that have different amount of temporal variation [Fig. 1e]. According to our
hypothesis that the motor-to-sensory transformation neural network mediated the
inner speech and verbal thinking, we further predicted that the different degrees of
neural entrainment to the rate of inner speech between two groups of trials would be
observed in specific areas in the frontal, parietal, and temporal regions [Fig. 1f],
where the core computation of motor simulation and perceptual estimation in the
motor-to-sensory transformation have been indicated (Tian & Poeppel, 2010, 2012;

Tian et al., 2016).
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Figure 1. Neural oscillations entrain the rate of imagined singing. A) Experimental paradigm.
According to the color of visual fixation, participants were asked to listen to the first sentence of three
famous songs, followed by imagined singing the song they just heard. The Alphabet Song was used for
illustration. Participants pressed a button to indicate the finish of imagery. B) Reaction time (RT) of
imagined singing for three songs. The red dashed lines indicated the duration of the three songs. The
duration of imagined singing was longer than the preceding auditory stimuli. C) Distribution of
imagined singing RT. The z-scores of RT followed a normal distribution, with about half trials in the
range of two standard deviations. D) Grouping of imagined singing trials. Twenty-four trials of each
song were sorted ascendingly based on the z-scores and were separated into two groups. Twelve trials
that were close to the mean RT were selected in the center-group, whereas the other twelve trials that
were further away from the mean RT were included in the dispersed-group. E) Hypothesis about neural

oscillation phase alignment across trials of imagined singing. Schematic display of two trials in each


http://dx.doi.org/10.1101/771196
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Sep. 16, 2019; doi: http://dx.doi.org/10.1101/771196. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

group. The short bar indicated the beginning and end of a trial. The wave lines represented neural
oscillations. The trials in the dispersed-group had different durations so that temporal variance was
large. The phase of neural oscillation that corresponded to the construction of syllabic representation
during imagined singing did not align across trials. Whereas in the center-group, the temporal variance
was small across trials, so that the phase of neural oscillation was more coherent across trials. F)
Hypothesis about phase coherence in the motor-to-sensory transformation network during imagined
singing. The motor-to-sensory transformation network was assumed to be a frontal-parietal-temporal
network, including the inferior frontal gyrus (IFG), insular cortex (INS) and premotor/supplementary
motor area (SMA) in the frontal lobe for simulating articulation; somatosensory areas (SI, SII),
supramarginal gyrus (SMQ) and its adjacent parietal operculum (OP), angular gyrus (AG) and
temporal-parietal junction (TPJ) in the parietal lobe for estimating somatosensory consequence; as well
as the superior temporal gyrus and sulcus (STG & STS) with a possibility of extension to the Heschl’s
gyrus (HG) in the temporal lobe for estimating auditory consequence. The more consistent phase
coherence at the delta band (1-3 Hz) — the rate of imagined singing of the three songs — were predicted
to be observed in the motor-to-sensory network. G) Waveforms and topographies in the listening
condition (Alphabet Song). The vertical dotted line at time 0 indicated the onset of the auditory stimuli.
Each black line represented waveform responses from a sensor and the red bold line represented the
root-mean-square (RMS) waveform across all sensors. Topographies were plotted every 333ms from
-1000ms to 4000ms. A clear auditory onset event-related response (M 100, the single topography in the
upper row) was observed. H) Waveforms and topographies in the imagery condition. Similar depicting
form as in G). The vertical dotted line at time 0 indicated the onset of imagined singing. No repetitive
patterns in topographies across the period. A similar event-related response in the range of M100
latency as in the listening condition was observed (the single topography in the upper row). 1) Phase-
coherence results in listening conditions. Neural entrainment was observed in the HG and its adjacent
aSTG and pINS, as well as premotor areas. J) Phase coherence results in the imagery conditions. More
consistent neural entrainment at the delta band was observed in the proposed motor-to-sensory
network, including frontal areas (IFG, aINS and premotor), parietal areas (intraparietal sulcus (IPS) and
TPJ), and temporal areas (HG, aSTG, and m&pSTS).

Materials and methods

Participants: Sixteen volunteers (7 males, mean age = 25 years, range from 19 to 32
years) participated in this experiment with monetary compensation. All participants
were right-handed native English speakers and without history of neurological
disorders. This experiment was approved by the Institutional Review Board (IRB) at

New York University.

Materials: Female vocals were recorded for the first sentences of four familiar songs
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(Alphabet Song: 6.24 s, 16 syllables, 2.56 syllables/sec; Itsy Bitsy Spider: 7.38 s, 23
syllables, 3.12 syllables/sec; Take Me out to the Ball Game: 5.42 s, 13 syllables, 2.40
syllables/sec; and Twinkle Twinkle Little Star: 6.10s, 14 syllables, 2.30 syllables/sec).
All songs were recorded with a sampling rate of 44.1 kHz. During the experiment,
stimuli were normalized and delivered at about 70 dB SPL via plastic air tubes
connected to foam earpieces (E-A-R Tone Gold 3A Insert earphones, Aearo

Technologies Auditory Systems).

Procedure: A fixation cross was presented in the center of the screen throughout the
experiment. Participants were asked to listen to one of the four songs when the color
of fixation was red. The fixation changed to yellow after the auditory stimulus offset.
After 1.5s, the fixation changed to purple, and participants were required to imagine
singing the song they just heard. They were asked to covertly reproduce the song
using the same rhythm and speed as the preceding auditory stimuli. Participants
pressed a button to indicate the finish of imagery. Reaction time was recorded. After
the button-press, the fixation turned into yellow and stayed on screen for 1.5s-2.5s
(with an increment of 0.333s) till the next trial began. During the imagined singing,
participants were required to refrain from any overt movement, and not to produce
any sounds. A video camera and a microphone were used to monitor any overt

movement and vocalization throughout the experiment.

Four blocks were included in this experiment, with 24 trials in each block (6 trials per

song in each block, 24 trials per song in total). The presentation order was
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randomized. Participants familiarized with the experimental procedure before the

experiment.

Behavioral analysis: The song of ‘Twinkle Twinkle Little Star’ was for a research
question independent from this study. Therefore, only three songs were used in further
analysis. The mean reaction time (RT) was obtained for the imagery of each song.
The RT data were further transferred into z-scores. The distribution of z-scores was
obtained and averaged across three imagery songs. The RT z-scores of 24 trials were
ranked from shortest to longest for each song and averaged across three songs. Two
groups were formed based on RT ranking: the centered group consisted of 12 trials
close to the mean RT, whereas the dispersed group comprised the other 12 trials that

were farther away from the mean RT.

MEG recording: Neuromagnetic signals were measured using a 157-channel whole
head axial gradiometer system (KIT, Kanazawa, Japan). Five electromagnetic coils
were attached to each participant’s head to monitor head position during MEG
recording. The locations of the coils were determined with respect to three anatomical
landmarks (nasion, left and right preauricular points) on the scalp using 3D digitizer
software (Source Signal Imaging, Inc.) and digitizing hardware (Polhemus, Inc.). The
coils were localized to the MEG sensors, at both the beginning and the end of the
experiment. The MEG data were acquired with a sampling frequency of 1000 Hz,

filtered online between 1 Hz and 200 Hz, with a notch at 60 Hz.

MEG analysis:
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Raw data were noise-reduced offline using the continuously adjusted least
square method (Adachi, Shimogawara, Higuchi, Haruta, & Ochiai, 2001) in MEG160
software (MEG Laboratory 2.001 M, Yokogawa Corporation, Eagle Technology
Corporation, Kanazawa Institute of Technology). We rejected the artifacts caused by
eye movement and cardiac activity with the independent component analysis (ICA).
Epochs were extracted for both trials in the listening and imagery conditions, with
each epoch of 6000 ms in duration (including 2000 ms pre-stimulus and 4000ms post-
stimulus period). For the listening conditions, 24 trials of each song were grouped and
formed three within-groups. Furthermore, eight trails were randomly sampled from 24
trials of each song and yielded a new group of 24 trials (between-group). This
sampling procedure was conducted three times to form three between-groups. The
sampling was without replacement so that each trial was used only once in the three
between-groups. For imagery conditions, MEG trials were separated into center-
groups and dispersed-groups for each song according to the RT z-scores (refer to the

above behavioral analysis).

Fast-Fourier-transform (FFT) was applied on each trial with a 500 ms time
window in steps of 200 ms. The phase values were extracted at each time point and
frequency. The inter-trial phase coherence (ITC) was calculated as Eq. 1 (Luo &
Poeppel, 2007), for each of the within-groups and between-groups in the listening
conditions, and for each of the center-groups and dispersed-groups in the imagery

conditions.
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N 2 N 2
D coso;(t, ) Dsing,(t, f)
ITC(t, f) =| = +| 2

N N

Eq. 1

The ITC characterizes the consistency of the temporal (phase) neural responses
across trials. If the phase responses were identical across trials, the ITC value would
be 1. The ITC values were averaged in the Delta band (1-3 Hz), according to our
hypothesis that neural responses would track the rhythm in acoustic signals and in
imagery at the syllabic rate of 2-3 Hz. Further, the ITC values were averaged over
time (0-4 s) and across three songs to yield a single value in every MEG channel for
the within-group and between-group in the listening conditions, and for each of the
center-group and dispersed-group in the imagery conditions. For the between-group
in the listening condition, the random grouping procedure was repeated 100 times

and yield 100 ITC values. The 95" percentile of ITC was chosen for further analysis.

Distributed source localization of ITC was obtained by using the Brainstorm
software (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The cortical surface was
reconstructed from individual structural MRI using Freesurfer (Martinos Center for
Biomedical Imaging, Massachusetts General Hospital, MA). Current sources were
represented by 15,002 vertices. Overlapping spheres method was used to compute the
individual forward model (Tadel et al., 2011). The inverse solution was calculated by
approximating the spatiotemporal activity distribution that best explains the ITC
value. Dynamic statistical parametric mapping (dSPM) (Dale et al., 2000) were

calculated using the noise covariance matrix estimated with the 1000ms pre-stimulus
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period. To compute and visualize the group results, each participant’s cortical surface
was inflated and flattened (Dale, Fischl, & Sereno, 1999) and morphed to a grand
average surface (Fischl, Sereno, & Dale, 1999). Source data was spatially smoothed
using a Gaussian smoothing function from implemental SurfStat package in

Brainstorm.

The non-parametric cluster-based permutation test (Maris & Oostenveld, 2007)
was used to assess the significant differences between groups in the source space
(Oostenveld, Fries, Maris, & Schoffelen, 2011). For the listening conditions, the ITC
values of the within-group were compared with the 95" percentile of ITC values of
the between-group. For the imagery conditions, the ITC values of the center-group
were compared with dispersed-group. The empirical statistics was first obtained by a
two-tailed paired t-test with two or more adjacent significant vertices. Next, a null
distribution was formed by randomly shuffling the group labels 1000 times. Cluster-
level FDR corrected results were obtained by comparing the empirical statistics with
the null distribution (alpha=0.05 for the listening conditions, and alpha=0.001 for the

imagery conditions).

Results

The reaction time of imagery suggested that the duration of imagined singing was
longer than the duration of auditory stimuli [Fig.1b] [one sample t-test; for song 1, t(15)
=6.04, p <0.001; for song 2, t(15) = 2.64, p = 0.02; for song 3, t(15) = 2.82, p = 0.01].

Repeat measures one-way ANOVA did not reveal differences in the increase of
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duration among imagined singing of the three songs [F(2) =2.17, p = 0.126], suggesting
the slow-down of speed in imagery plus motor responses of button press were consistent
during imagery of all songs. The distribution of RT [Fig. 1c] followed a normal
distribution [chi-square goodness-of-fit test, y2(4) = 2.30, p = 0.68] and revealed that
about half of trials falling within two (plus and minus) standard deviations. Two groups
of trials, on the basis of the variation from the mean of RT, were formed for further
analysis of MEG responses of imagined singing: for imagery of each song, 12 trials that
were close to the mean were included in the center-group, whereas the other 12 trials

that were farther away from the RT mean were included in the dispersed-group [Fig.

1d].

We first examed the MEG in the temporal domain. The responses time-locked to
the onset of auditory stimuli (event-related responses) revealed a clear peak and
topography of M100 auditory response (Fig. 1g). Moreover, in the imagined singing
condition, a topographic pattern that was similar to the M100 auditory response was
observed around the similar latency (Fig. 1h), even though no external auditory
stimulus was presented in the imagined conditions. This similar event-related auditory
responses in the listening and imagery conditions were consistent with our previous
findings (Tian & Poeppel, 2010) and suggested that auditory cortices were activated
during imagery conditions. Moreover, no repetitive patterns were observed in the time
course of listening or imagery (Fig. 1g&h), suggesting that the tracking of the

acoustic stream or the rate of imagery was not by the response magnitude.

We further investigated the neural tracking in the spectral domain. The MEG
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responses in the listening conditions showed neural tracking of rhythm in the songs.
The phase-coherence analysis revealed that the significant differences (pcorr@#pr) <
0.05) between the ITC of the within-group and between-group were localized mostly
in the primary auditory cortex (HG) and its adjacent areas including left anterior
superior temporal gyrus (1aSTG) and sulcus (1aSTS), and bilateral posterior insula
(pINS) [Fig. 1i]. These results suggested that auditory systems can reliably follow the
rhythm in the acoustic signals. These results demonstrated the validity and accuracy

of source localization based on phase coherence.

For the imagery condition, comparison between the ITC in the center-group and
dispersed-group revealed three significant clusters (pcor-#pr<0.01) in the frontal,
parietal and temporal regions [Fig. 1j]. Specifically, in the frontal region, more
consistent phase coherence was observed in the left inferior frontal gyrus (I1IFG),
insular cortex, and left middle frontal gyrus (IMFG) and sulcus (IMFS), as well as the
right premotor cortex (rPreM). In the parietal region, the differences were in the
bilateral intra-parietal sulcus (IPS) and left temporal-parietal junction (ITPJ). In the
temporal region, more consistent phase coherence was located in the bilateral HG,
IaSTG and right middle and posterior superior temporal sulcus (rmSTS, rpSTS).
These activation patterns during imagined singing were consistent with the proposed
core computational regions in motor-to-sensory transformation [Fig. 1f], and
confirmed the motor-based prediction pathway (Tian & Poeppel, 2010, 2012; Tian et

al., 2016).
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Discussion

We investigated the function and dynamics of neural network that mediated the
inner speech in verbal thinking. With an imagery singing paradigm, we found that
frontal-parietal-temporal regions in the proposed motor-to-sensory network
collaboratively synchronized at the rate of inner speech. These results suggest that
neural oscillations can entrain the rhythm of mental activity. The synchronized neural
activity in the motor-to-sensory transformation network mediates the inner speech in

verbal thinking.

Three advances are in this study. First, we used sentences in the lyrics of famous
songs as experimental stimuli. Our experimental setting was naturalistic, and the
results were more generalizable to everyday situations. Second, we implemented a
frequency-tagging procedure. Participants were asked to imagined singing according
to the given rhythm of songs. We used sophisticated phase-coherence analysis to
probe the dynamics of mental activity. In this way, the neural dynamics during inner
speech in verbal thinking was obtained. Third, the MEG recording was at the system
level, so that the source localization can provide a whole-brain analysis, similar as
studies using neuroimaging methods (Hurlburt, Alderson-Day, Kiihn, & Fernyhough,
2016; McGuire et al., 1995; McGuire et al., 1996). Moreover, combined with the
analyses on neural oscillations, both functional and anatomical aspects of motor-to-

sensory transformation network were investigated.

Using the functional constraints of phase-coherence in neural oscillations, the
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observed frontal-parietal-temporal network during imagined singing was consistent
with the proposed motor-to-sensory transformation network. The observed IFG,
premotor and insular cortices in the frontal region in this study were involved in
articulatory preparation during overt (Bohland, Bullock, & Guenther, 2010; Bohland
& Guenther, 2006; Buiatti et al., 2009) and covert speech (McCarthy, Blamire,
Rothman, Gruetter, & Shulman, 1993; Papathanassiou et al., 2000). The responses in
these frontal cortices were also consistent with findings in speech imagery, suggesting
the function of motor simulation (Tian et al., 2016). In the parietal region, the
observation of TPJ in this study, an area closed to SMG, PO and Angular Gyrus (AG),
has been suggested for sensorimotor integration and goal-directed prediction-based
speech feedback control (Alexandrou, Saarinen, Mikeld, Kujala, & Salmelin, 2017,
Behroozmand et al., 2018; Cogan et al., 2014; Rong, Isenberg, Sun, & Hickok, 2018).
Similar parietal areas of TPJ, SMG, PO, and adjacent IPS were also observed during
speech imagery, suggesting possible functions for estimating somatosensory

consequences of actions (Tian & Poeppel, 2010; Tian et al., 2016).

The observations in the temporal region further support the motor-to-sensory
transformation during inner speech in verbal thinking. Comparing the phase-
coherence results in imagined singing with those in listening conditions, the
observations were overlapped in the temporal regions of primary and secondary
auditory cortices. The STG was commonly observed during musical imagery (Zatorre
& Halpern, 2005). The activation of auditory imagery can extend to the HG (Kraemer

et al., 2005). The observation of HG during inner speech in this study was consistent
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with the hypothesis that high task demand drove auditory estimation down to primary
sensory area (Tian et al., 2018). The rSTS was only observed in imagined singing but
not in listening conditions, which was consistent with previous findings (Tian et al.,
2016), suggesting a possible specific functional role of STS in auditory imagery. The
additional frontal (IFG, INS) and parietal (TPJ, IPS) activations in imagined singing
suggest that auditory representation, similar as the representation established in

perception, can be constructed via the motor-to-sensory transformation pathway (Tian

& Poeppel, 2010, 2012; Tian et al., 2016).

This study provides hints about the possible functions of neural oscillations on
perception. Many studies demonstrated that neural oscillations could entrain speech
signals (Ding & Simon, 2012; Luo & Poeppel, 2007). However, it is still in debate
whether the entrainment is driven by the stimuli features or is modulated by a top-
down factor on intrinsic oscillations (Ding & Simon, 2014). Previous frequency-
tagging experiments used external stimuli and investigated how neural oscillations
track physical features. The perceptual constructs are derived from external stimuli
features. It is hard, if not impossible, to separate perception from stimuli, and hence
cannot solve the debate. Our results of imagined singing without external stimulation
suggest that the phase of neural oscillations can be aligned to internal thought. That is,
the phase of neural oscillations can be modulated by internally constructed
representation during rhythmic mental imagery. These results support the view that a

top-down factor modulates intrinsic neural oscillations.

These results may have impacts on practical and clinical domains. The motor-to-
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sensory transformation network for imagined speech may implicate novel strategies
for building brain-computer interface (BCI). Previous direct BCI mostly focuses on
the motor system (Pfurtscheller & Neuper, 2001). Our findings of synchronized neural
activity across motor and sensory domains during mental imagery suggest possible
updates of decoding algorithms from a system-level and multi-modal perspective,
which is demonstrated in a recent advance (Anumanchipalli, Chartier, & Chang,
2019). Moreover, these results may offer insights into the functional and anatomical
foundations of auditory hallucination. We have hypothesized that from a cognitive
perspective, auditory hallucination may be caused by incorrect source monitoring of
internally self-induced auditory representation (Tian & Poeppel, 2012). These results
of synchronized neural activity in the frontal-parietal-temporal network suggest the
possible neural pathways for internal generation of auditory representation. These
results are consistent with the neural modulation treatment for auditory hallucination
that targets the electric stimulation at the motor-to-sensory transformation network

(Yang et al., 2019).

Using a frequency-tagging imagined singing paradigm, we observed that thought
modulated the phase of neural oscillations at an internal rate of thinking. The
synchronized activity spanned across dedicated frontal-parietal-temporal regions that
indicated the motor-to-sensory transformation network. The coherent activation in the
motor-to-sensory transformation network mediates the internal construction of
perceptual representation and forms the neural computation foundation for inner

speech during verbal thinking.
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Figure captions

Figure 1. Neural oscillations entrain the rate of imagined singing. A) Experimental paradigm.
According to the color of visual fixation, participants were asked to listen to the first sentence of three
famous songs, followed by imagined singing the song they just heard. The Alphabet Song was used for
illustration. Participants pressed a button to indicate the finish of imagery. B) Reaction time (RT) of
imagined singing for three songs. The red dashed lines indicated the duration of the three songs. The
duration of imagined singing was longer than the preceding auditory stimuli. C) Distribution of
imagined singing RT. The z-scores of RT followed a normal distribution, with about half trials in the
range of two standard deviations. D) Grouping of imagined singing trials. Twenty-four trials of each
song were sorted ascendingly based on the z-scores and were separated into two groups. Twelve trials
that were close to the mean RT were selected in the center-group, whereas the other twelve trials that
were further away from the mean RT were included in the dispersed-group. E) Hypothesis about neural
oscillation phase alignment across trials of imagined singing. Schematic display of two trials in each
group. The short bar indicated the beginning and end of a trial. The wave lines represented neural
oscillations. The trials in the dispersed-group had different durations so that temporal variance was
large. The phase of neural oscillation that corresponded to the construction of syllabic representation
during imagined singing did not align across trials. Whereas in the center-group, the temporal variance
was small across trials, so that the phase of neural oscillation was more coherent across trials. F)
Hypothesis about phase coherence in the motor-to-sensory transformation network during imagined
singing. The motor-to-sensory transformation network was assumed to be a frontal-parietal-temporal
network, including the inferior frontal gyrus (IFG), insular cortex (INS) and premotor/supplementary
motor area (SMA) in the frontal lobe for simulating articulation; somatosensory areas (SI, SII),
supramarginal gyrus (SMG) and its adjacent parietal operculum (OP), angular gyrus (AG) and
temporal-parietal junction (TPJ) in the parietal lobe for estimating somatosensory consequence; as well
as the superior temporal gyrus and sulcus (STG & STS) with a possibility of extension to the Heschl’s
gyrus (HG) in the temporal lobe for estimating auditory consequence. The more consistent phase
coherence at the delta band (1-3 Hz) — the rate of imagined singing of the three songs — were predicted
to be observed in the motor-to-sensory network. G) Waveforms and topographies in the listening
condition (Alphabet Song). The vertical dotted line at time 0 indicated the onset of the auditory stimuli.
Each black line represented waveform responses from a sensor and the red bold line represented the
root-mean-square (RMS) waveform across all sensors. Topographies were plotted every 333ms from
-1000ms to 4000ms. A clear auditory onset event-related response (M 100, the single topography in the
upper row) was observed. H) Waveforms and topographies in the imagery condition. Similar depicting
form as in G). The vertical dotted line at time 0 indicated the onset of imagined singing. No repetitive
patterns in topographies across the period. A similar event-related response in the range of M 100

latency as in the listening condition was observed (the single topography in the upper row). I) Phase-
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coherence results in listening conditions. Neural entrainment was observed in the HG and its adjacent
aSTG and pINS, as well as premotor areas. J) Phase coherence results in the imagery conditions. More
consistent neural entrainment at the delta band was observed in the proposed motor-to-sensory
network, including frontal areas (IFG, aINS and premotor), parietal areas (intraparietal sulcus (IPS) and

TPJ), and temporal areas (HG, aSTG, and m&pSTS).
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